A Poisson Bracket on Multisymplectic Phase Space ∗
نویسنده
چکیده
A new Poisson bracket for Hamiltonian forms on the full multisymplectic phase space is defined. At least for forms of degree n − 1, where n is the dimension of space-time, Jacobi's identity is fulfilled.
منابع مشابه
Vol. Xx (xxxx) a Poisson Bracket on Multisymplectic Phase Space *
A new Poisson bracket for Hamiltonian forms on the full multisymplectic phase space is defined. At least for forms of degree n − 1, where n is the dimension of space-time, Jacobi's identity is fulfilled.
متن کاملDe Donder-weyl Equations and Multisymplectic Geometry
Multisymplectic geometry is an adequate formalism to geometrically describe first order classical field theories. The De Donder-Weyl equations are treated in the framework of multisymplectic geometry, solutions are identified as integral mani-folds of Hamiltonean multivectorfields. In contrast to mechanics, solutions cannot be described by points in the multi-symplectic phase space. Foliations ...
متن کاملفرمولبندی هندسی کوانتش تغییرشکل برزین
In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H) and use its geometric structure to construct a correspondence between a given classical theory and a given quantum theory. It wil be shown that the star product in berezin quantization is equivalent to the Posson bracket on coherent states manifold M, embodded in P(H), and the Berezin method is used to...
متن کاملOn the geometry of multi-Dirac structures and Gerstenhaber algebras
In a companion paper, we introduced a notion of multi-Dirac structures, a graded version of Dirac structures, and we discussed their relevance for classical field theories. In the current paper we focus on the geometry of multi-Dirac structures. After recalling the basic definitions, we introduce a gradedmultiplication and amulti-Courant bracket on the space of sections of a multi-Dirac structu...
متن کاملCategorified Symplectic Geometry and the Classical String
A Lie 2-algebra is a ‘categorified’ version of a Lie algebra: that is, a category equipped with structures analogous those of a Lie algebra, for which the usual laws hold up to isomorphism. In the classical mechanics of point particles, the phase space is often a symplectic manifold, and the Poisson bracket of functions on this space gives a Lie algebra of observables. Multisymplectic geometry ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000